853 research outputs found

    Single-field inflation constraints from CMB and SDSS data

    Full text link
    We present constraints on canonical single-field inflation derived from WMAP five year, ACBAR, QUAD, BICEP data combined with the halo power spectrum from SDSS LRG7. Models with a non-scale-invariant spectrum and a red tilt n_s < 1 are now preferred over the Harrison-Zel'dovich model (n_s = 1, tensor-to-scalar ratio r = 0) at high significance. Assuming no running of the spectral indices, we derive constraints on the parameters (n_s, r) and compare our results with the predictions of simple inflationary models. The marginalised credible intervals read n_s = 0.962^{+0.028}_{-0.026} and r < 0.17 (at 95% confidence level). Interestingly, the 68% c.l. contours favour mainly models with a convex potential in the observable region, but the quadratic potential model remains inside the 95% c.l. contours. We demonstrate that these results are robust to changes in the datasets considered and in the theoretical assumptions made. We then consider a non-vanishing running of the spectral indices by employing different methods, non-parametric but approximate, or parametric but exact. With our combination of CMB and LSS data, running models are preferred over power-law models only by a Delta chi^2 ~ 5.8, allowing inflationary stages producing a sizable negative running -0.063^{+0.061}_{-0.049} and larger tensor-scalar ratio r < 0.33 at the 95% c.l. This requires large values of the third derivative of the inflaton potential within the observable range. We derive bounds on this derivative under the assumption that the inflaton potential can be approximated as a third order polynomial within the observable range.Comment: 32 pages, 7 figures. v2: additional references, some typos corrected, passed to JCAP style. v3: minor changes, matches published versio

    Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias

    Get PDF
    We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard LCDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model and forecasts from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among fNLf_{\rm NL} and the running of the spectral index αs\alpha_s, the dark energy equation of state ww, the effective sound speed of dark energy perturbations cs2c^2_s, the total mass of massive neutrinos Mν=∑mνM_\nu=\sum m_\nu, and the number of extra relativistic degrees of freedom NνrelN_\nu^{rel}. Neglecting CMB information on fNLf_{\rm NL} and scales k>0.03hk > 0.03 h/Mpc, we find that, if NνrelN_\nu^{\rm rel} is assumed to be known, the uncertainty on cosmological parameters increases the error on fNLf_{\rm NL} by 10 to 30% depending on the survey. Thus the fNLf_{\rm NL} constraint is remarkable robust to cosmological model uncertainties. On the other hand, if NνrelN_\nu^{\rm rel} is simultaneously constrained from the data, the fNLf_{\rm NL} error increases by ∼80\sim 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1--σ\sigma error of the order ΔfNL∼2−5\Delta f_{\rm NL} \sim 2-5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.Comment: 17 pages, 1 figure added, typos corrected, comments added, matches the published versio

    The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations

    Full text link
    Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT experiments respectively when considered in conjunction with Planck data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by 3σ3\sigma (1σ1\sigma) for a single correlated isocurvature mode, and up to 8σ8\sigma (3σ3\sigma) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 100% for certain modes in the fully correlated case.Comment: 20 pages, 17 figure

    Probing the primordial power spectra with inflationary priors

    Full text link
    We investigate constraints on power spectra of the primordial curvature and tensor perturbations with priors based on single-field slow-roll inflation models. We stochastically draw the Hubble slow-roll parameters and generate the primordial power spectra using the inflationary flow equations. Using data from recent observations of CMB and several measurements of geometrical distances in the late Universe, Bayesian parameter estimation and model selection are performed for models that have separate priors on the slow-roll parameters. The same analysis is also performed adopting the standard parameterization of the primordial power spectra. We confirmed that the scale-invariant Harrison-Zel'dovich spectrum is disfavored with increased significance from previous studies. While current observations appear to be optimally modeled with some simple models of single-field slow-roll inflation, data is not enough constraining to distinguish these models.Comment: 23 pages, 3 figures, 7 tables, accepted for publication in JCA

    Inter-rater reliability of the EPUAP pressure ulcer classification system using photographs

    No full text
    Background. Many classification systems for grading pressure ulcers are discussed in the literature. Correct identification and classification of a pressure ulcer is important for accurate reporting of the magnitude of the problem, and for timely prevention. The reliability of pressure ulcer classification systems has rarely been tested. Aims and objectives. The purpose of this paper is to examine the inter-rater reliability of classifying pressure ulcers according to the European Pressure Ulcer Advisory Panel classification system when using pressure ulcer photographs.Design. Survey was among pressure ulcer experts.Methods. Fifty-six photographs were presented to 44 pressure ulcer experts. The experts classified the lesions as normal skin, blanchable erythema, pressure ulcer (four grades) or incontinence lesion. Inter-rater reliability was calculated.Results. The multirater-Kappa for the entire group of experts was 0.80 (P &lt; 0.001).Various groups of experts obtained comparable results. Differences in classifications are mainly limited to 1 degree of difference. Incontinence lesions are most often confused with grade 2 (blisters) and grade 3 pressure ulcers (superficial pressure ulcers).Conclusions. The inter-rater reliability of the European Pressure Ulcer Advisory Panel classification appears to be good for the assessment of photographs by experts. The difference between an incontinence lesion and a blister or a superficial pressure ulcer does not always seem clear.Relevance to clinical practice. The ability to determine correctly whether a lesion is a pressure ulcer lesion is important to assess the effectiveness of preventive measures. In addition, the ability to make a correct distinction between pressure ulcers and incontinence lesions is important as they require different preventive measures. A faulty classification leads to mistaken measures and negative results. Photographs can be used as a practice instrument to learn to discern pressure ulcers from incontinence lesions and to get to know the different grades of pressure ulcers. The Pressure Ulcer Classification software package has been developed to facilitate learning

    The dark side of curvature

    Get PDF
    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d_A(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega_k in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d_A(z) up to sufficiently high redshifts around z = 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)-Omega_k degeneracy.Comment: 18 pages, 9 figures. Minor changes, matches version accepted in JCA

    Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties

    Full text link
    We use N-body simulations to find the effect of neutrino masses on halo properties, and investigate how the density profiles of both the neutrino and the dark matter components change as a function of the neutrino mass. We compare our neutrino density profiles with results from the N-one-body method and find good agreement. We also show and explain why the Tremaine-Gunn bound for the neutrinos is not saturated. Finally we study how the halo mass function changes as a function of the neutrino mass and compare our results with the Sheth-Tormen semi-analytic formulae. Our results are important for surveys which aim at probing cosmological parameters using clusters, as well as future experiments aiming at measuring the cosmic neutrino background directly.Comment: 20 pages, 8 figure

    Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter

    Full text link
    We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order corrections which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of \mu, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of \mu and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion.Comment: 37 pages, 13 figures, published in JCA

    Distribution function approach to redshift space distortions

    Full text link
    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent on large scales. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum in terms of angle mu between wave vector and line of sight. We show that the dominant term of mu^2 dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. Similarly, we identify 7 terms contributing to mu^4 dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.Comment: 12 page

    Security of quantum cryptography using balanced homodyne detection

    Full text link
    In this paper we investigate the security of a quantum cryptographic scheme which utilizes balanced homodyne detection and weak coherent pulse (WCP). The performance of the system is mainly characterized by the intensity of the WCP and postselected threshold. Two of the simplest intercept/resend eavesdropping attacks are analyzed. The secure key gain for a given loss is also discussed in terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure
    • …
    corecore